
Ratcl & Vlerq
Jean-Claude Wippler

The Netherlands

Tcl «sucks» at data

yes: lists & arrays, but structures? booh!

so? use a database, dummy!

different language, different mindset

2 worlds: extract, use, apply changes

foreach? mix with Tcl code? traces?

why is writing an app so much work?

Spreadsheets

ya’ build things and they just come alive

you ACT, the system REACTS - no coding!

but a grid of cells is an awful mess …

I want more structure, relational please

… and LIVE DATA, so I can spend time on
logic, not on “action A affects X, Y, & Z”

Go away, UI !

visual design is necessary - Tk & Web

a lot of code is manual coding of effects

why spell out so many details?

I want DATA-AWARE widgets

which track changes to data & styles

Model/View/Controller: dynamic views!

Ratcl

Relational Algebra (and more) for Tcl

table-like data model, called “views”

sub-views can nest to any depth

select, project, join, product, group, sort

union, intersect, except - concat, slice, …

syntax designed for Tcl, with “pipelines”

Ratcl - benefits
the “view” mindset

set-wise convenience

vectors out-run Tcl, even its C prims

it’s a DB: instant open, fail-safe commit

Rasql

SQL is a standard, efficient, simple

Ha ha ha!

everyone knows SQL, it’s a safe choice

so true … so was COBOL

Rasql - thin layer on top of Ratcl

full SELECT, probably nothing else

Say “vlerq”

an agonizing decision:

rhymes with “flair”

not “burp” or “jerk”

repeat after me:

flair-ck!

vlerq, vlerQ , whatever

It gets worse

you think Vlerq was a weird name?

how about …

Thrive - embedded Vector Engine VM

Thrill - Low-level Language for Thrive

Ratcl - Relational Algebra for Tcl

Rasql - Relational Algebra based SQL

Vlerq - research project

Ratcl will be its first “tangible” result

The ultimate goal is DATAFLOW

make data-aware GUI widgets feasible

change propagation & traces

networked “backplane” - Tequila

Tcl is a great fit - for several reasons

So what is Vlerq?

programming in a data-centric way

built-in persistence, forget load/save

use & manipulate set-wise, not loops

think in Tcl, code in Tcl, stay in Tcl

but what Vlerq REALLY aims to be:

the Relational Spreadsheet !

Status - Oct 2005

core data engine is now ok - 5 rewrites

Tclkit Lite - no more C++, new code, tiny

performance similar: it’s interpreted!

Ratcl 1.0 ready end 2005 - *kit < 50 Kb

r/w, no commit, no dataflow, not fast

all MIT-licensed OSS @ www.vlerq.org

Architecture

Thrive
VM

Thrill code

runtime

interface

C API

 Tcl binding

Relational Algebra

shared lib + Tcl scripts

Ratcl package

MK DF

MK = Metakit compatible persistent storage

DF = Dataflow logic & change propagation

not in
Tclkit Lite

Expectations

Mine are very high, unfortunately!

performance, flexibility, ease-of-use

speed: outperform Tcl lists/arrays

flexible: relational data & XML data

ease-of-use: Ratcl fades into Tcl, like Tk

dataflow: data-aware widget catalyst?

Lessons learned...

Metakit’s file format is very effective

being different pays off: column-wise

the secret of Ratcl and MK is vectors

Vlerq is really about finding simplicity

it’s great to have Vlerq funded by Eolas

Building Tclkit Lite

 wget http://www.equi4.com/pub/tk/tars/genkit

tclsh genkit A « or tclkit

tclsh genkit B tcl « or tclkit

sh genkit B lite « - Mk4tcl, + Thrive

sh genkit D lite « good enough to try it

sh genkit E lite « needs a full tclkit (!)

