
Ratcl & Rasql
Jean-Claude Wippler

The Netherlands

The Data Dilemma

data on disk

permanent

passive

data in memory

running apps

modifiable

OFF

ON

Everything in Tcl

application startup and exit:

 array set mydata [read $fd]
 puts $fd [array get mydata]

sluggish - doesn’t scale

risky - lose all if write fails

structure? search? share? speed?

Everything in a DB

learn a new language & mindset

which DB, pick ONE and stick with it

startup - can take a lot more code

copy, copy, copy data from DB to Tcl

copy, copy, copy data from Tcl to DB

design structure first - or be sorry later

Relational Algebra

best intro I’ve seen:

!http://en.wikipedia.org/wiki/
!! ! ! ! ! ! Relational_algebra

can do everything with 6 primitives:

 select, project, product,
 union, difference, rename

could RA be what SQL should have been?

Ratcl

stay in Tcl, think in Tcl, code in Tcl

manipulate data, still on disk

access managed by Ratcl

lots of data manipulation operators

relational, set-wise, vectors

transactions - commit/rollback, ACID

Implications

you control the data, but don’t own it

learn to work with “views”

stop writing loops to find & process

think relational, set-wise, “wham!”

large speed & memory-use benefits

no hostages - can always import/export

Views

A view:

rectangular “array”, “table”

named columns uniform type

rows 0 .. N-1 vertical: efficient

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

The “wham” mindset

Relational product of views A and B:

name age

John 12

Mary 15

Bill 18

A:

shoe size

left 32

right 38

B: #A = 3

#B = 2

name age

John 12

Mary 15

Bill 18

John 12

Mary 15

Bill 18

shoe size name age

John 12

Mary 15

Bill 18

John 12

Mary 15

Bill 18

shoe size

+ =

A x B:

left 32

right 38

left 32

right 38

left 32

right 38

left 32

right 38

left 32

right 38

left 32

right 38

Views are virtual

the “product” example uses NO memory

it doesn’t read any data

data is read when accessed

memory-mapped files, no copying

cached by the O/S, same as “paging”

combined operations are also virtual

Data exchange

Tcl to view - “real data”
! set r [vdef name age shoesize {Paul 15 32}]

! set v [vdef name age [array get mydata]]

view to Tcl - “real processing”
! puts [view $v sort | get]

! view $v each c { puts $c(name) }

! array set a [view $v where {age >= 16} | get]

Meta-views

Every view has a meta-view ...

... which describes its structure

View: Meta-view:

#columns in view = #rows in meta-view

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

type name subv

I shoesize -

S name -

I age -

Eva 13 32

Julia 16 34

Repeating data

let’s add a field to list their friends:

how do you represent this?

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friends

Mary, Eva, Julia

Eva, Bill

Mary

John

Mary

Repeat the rows?

store each friend in a row copy:

can (will!) become inconsistent - BAD

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friend

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

Mary 15 35

John 12 32

John 12 32

Relational: normalize

use two relations, link by common key:

Master: Detail:

simple & consistent

keys may require a lot of space

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friend

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

name

John

Mary

Bill

Eva

Julia

Mary

John

John

Sub-views

embed 1:N in a hierarchical way:

still clean & tidy

more efficient in time & space

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friends

Mary

John

Mary

Eva

Bill

Mary

Eva

Julia

name

Ratcl can “flatten” …

subviews and expanded are equivalent:
$v =

view $v flatten friends =

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friends

Mary

John

Mary

Eva

Bill

Mary

Eva

Julia

name

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

Mary 15 35

John 12 32

John 12 32

name age shoesize friend

… and go back: “group”

grouping is inverse of flattening:
$v =

view $v group name age shoesize =

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friends

Mary

John

Mary

Eva

Bill

Mary

Eva

Julia

nameJohn 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

Mary 15 35

John 12 32

John 12 32

name age shoesize friend

Relational Join

the workhorse for normalized data:
$v =!! ! ! ! $w =

“classical” join result =

physical = “v & w” versus logical = joined

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friend

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

name

John

Mary

Bill

Eva

Julia

Mary

John

John

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

Mary 15 35

John 12 32

John 12 32

name age shoesize friend

Joins

a join is “N lookups in parallel”

joins produce subviews in Ratcl

no NULLs, yet equivalent

rely on flattening & grouping

think in very high-level: data shapes!

Ratcl’s Join

first, group repeated field to subviews ...
$w =!

 $wg =

view $w group name =

friend

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

name

John

Mary

Bill

Eva

Julia

Mary

John

John

name

John

Mary

Bill

Eva

Julia

friends

Mary

John

Mary

Eva

Bill

Mary

Eva

Julia

name

Ratcl’s Join - part 2

... then connect corresponding rows
$v =!! ! ! ! $wg =

view $v join $wg = (same result)

name

John

Mary

Bill

Eva

Julia

friends

Mary

John

Mary

Eva

Bill

Mary

Eva

Julia

name

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friends

Mary

John

Mary

Eva

Bill

Mary

Eva

Julia

name

It’s all Relational

SQL
! SELECT * FROM data
! ! WHERE name = ‘John’
! ! ORDER BY age

Ratcl
! view $data where {name = ‘John’} | sort age

or maybe
! view $data where {name == “John”} | sort age

SQL & Rasql

(S)tructured - tables & joins

(Q)uery - “what”, not “how”

(L)anguage - standard notation

Rasql translates SQL to Ratcl view ops

thin layer to create an “access plan”

SQL?

1 standard? - N dialects!

optimization, trial and error

NULL, 3-valued logic

half a programming language

Rasql doesn’t try to be “big” SQL system

Inside Ratcl

guided by simplicity and performance

lessons from Forth, APL, and Metakit

“obsessively vector-oriented” design

tiny special-purpose virtual machine

portable implementation language

Minimalism

Forth & APL show that “less is more”

built on a very uniform data structure

tiny and fast mark/sweep GC

VM is < 1000 lines of C code

1000 more for vector ops

it’s all under the hood - Tcl is the API

How small?

VM is a 30 Kb C extension

Tcl wrapper is another 40 Kb

as starkit - which uses compression
 http://www.equi4.com/pub/vq/ratcl.kit

100 Kb for complete system

includes binaries for 5 platforms

Speed: think again

SQL: SELECT * FROM data WHERE name = ‘John’

“*” often reads too much

Ratcl: set v [view $data where {name = ‘John’}]

USE determines I/O: later & lazily

column-wise “inverted” storage

like having indexes on everything

How Rasql works

select name from students
 where age > 15
 group by shoesize
 having count(shoesize) > 1

1. map to groups 4. flatten result
2. collect counts 5. omit some ages
3. omit some counts 6. done!

Why it’s fast

1. load column of shoe sizes: 1 read

2. locate duplicates via hash: O(N)

3. load column of ages: 1 read

4. select specific age range: O(N)

5. logical AND, bitmaps: fast

6. Done!

How fast?

Join 161,127 x 47,079 on 1 int:
 Ratcl: 0.08 s, Metakit: 3.16 s

Find unique IP’s in 1,077,106 entries
 Ratcl 0.15 s, Tcl 3.7 s (lsort -unique)
! (~ 4 Mb) (~ 28 Mb)

Find 3 matches in 1,077,106 values
 Ratcl 1.66 s, Metakit 2.18 s, SQLite 3.85 s
! Ratcl 28 µS, SQLite 316 µS - indexed
! ! ! ! ! ! (create 37s, drop 3.2s)

Current status

Ratcl 0.92

it works, many operators

API has not been frozen yet

it’s not very robust or fast right now

maps MK datafiles, and writes dumps

Rasql - only an older preview

Progress

on the web as “Vlerq” research project

 http://www.vlerq.org/

good software is like good wine

consumed quickly just gets you drunk

take your time to enjoy its richness

most of my 2005 time goes into Vlerq

