
Relational algebra for T cl: introducing Ratcl and Rasql

Jean-Claude Wippler
Equi4 Software
jcw@equi4.com

ABSTRACT
There are a number of ways to manage data in Tcl, from native lists and arrays to various database bindings.
The choice involves trade-offs regarding persistence, robustness, performance, memory use, query capabilities,
scalability, portability, standards conformance, and convenience. This is an issue even for simple scenarios,
given Tcl's limited support for data structures. A new approach will be presented which is based on relational
algebra, supplied through two packages: Ratcl, which provides a relational algebra extension that fits naturally
with Tcl. And Rasql, which provides a layered SQL interface for those who prefer it. Both are based on over a
decade of experience gained with Metakit's vector-oriented internal data model, and use a new very compact
and efficient C-coded engine called Thrive. Ratcl introduces a terminology and set of conventions which mini-
mize the impedance mismatch caused by having databases added on instead of native persistence and query
support, while Rasql takes this one step further to map standard SQL queries onto Ratcl. Working examples will
be presented, along with performance results so far. This covers the first phase, which focuses on access and
querying. The second phase is work in progress and will be briefly described - it deals with modifications,
transactions, and multi-user scenarios.

Intr oduction
Tcl has a range of mechanisms to deal with data, both
in-memory and on-disk. One of the more unusual
and very powerful aspects of Tcl is that (almost)
Òeverything is a stringÓ (EIAS) as far as the pro-
grammer is concerned.

This is both a blessing and a curse. The total lack of
inherent type with EIAS that makes it very easy to
quickly write code, can also be a cause for trouble:

¥ Type-less data can lead to code where bugs are
caught later in the development process.

¥ Fewer opportunities to work with highly optimized
data representation formats.

¥ No simple solution for missing values, i.e. null as
being distinct from the empty string.

The lack of explicit type translates directly to the lack
of explicit structure, i.e. compound types (records).
While Tcl offers some very convenient mapping such
as the new ÒdictÓ convention in 8.5, this type is not as
easily enforced or stored truly efficiently on file.

When large volumes of data are involved (more than
can conveniently be held in memory) or when high
performance data manipulation is required, the EIAS
approach by itself tends to lead to a lot of Tcl coding
to deal with the unwanted consequences. This is usu-
ally just about the time when people start looking at
databases as a way to address these issues.

There is something odd going on: as a language, Tcl
offers amazing productivity gains when it comes to
developing large-scale production software, but when
a substantial amount of data is involved, much of the
benefits are left behind as the coding switches to a

very different database style, such as SQL.

This paper presents a conceptual model based on
Relational Algebra (RA) and shows how it can be
embedded in Tcl in such a way that the benefits
of scripting and quick ad-hoc coding remain,
while the data gets managed in a completely new
way, with high performance and persistence
thrown in for free.

The Ratcl and Rasql extensions described here
are part of a larger research project called
ÒVlerqÓ, which will also be presented briefly
later on.

So whatÕs the problem, really?
The main reason why data storage has so many
implications for programming is copying.

Programs are strange beasts: when launched,
they start with a completely empty slate Ð all data
processed by a program needs to be brought in,
either directly from file or via a database layer.
Worse, all new data, and all results produced by
the program need to be saved back to ÒpersistÓ.
Do nothing, or crash, and the data will vanish.
Imagine us working that way, knowing nothing
when we wake up, and forgetting everything
when we go to sleep!

So what most programs do, and have been doing
for decades, is to create mechanism to facilitate
this task of ÒfetchingÓ and ÒstoringÓ data, or
ÒloadingÓ and ÒcommittingÓ in database par-
lance.

The mindset that goes along with this is very
deeply entrenched in most programming lan-

- 1 -

guages. One possible exception is Smalltalk /
Squeak, where the system itself loads all data on
startup and saves it again on quit Ð treating code and
data uniformly.

For a database to be usable in Tcl we expect it to be
good at fetching the data we need, and good at saving
it back robustly and efficiently when changed.

LetÕs examine the different existing approaches to
data storage, before attempting to offer an alternative.

Flat files
The simplest form of data storage by far is to dump
everything to file, and restore it all in full later. The
term ÒflatÓ is used, because in most programming
languages this tends to destroy all structure, i.e. inter-
data relationships.

In Tcl, structure can be saved on file for free. If you
store a list, itÕll come back as a list. This is one of the
immense benefits of the EIAS approach of Tcl. So in
a way, Tcl is actually much better equipped to work
with (flat) files than most other languages.

There are drawbacks to flat files, though. For one,
you have to dump and restore all data at once. There
is no easy way to work with subsets (especially in
terms of saving only the changes back). This makes
the dump/restore slow as more data is involved, and
means a copy of all data has to be held in memory.

Another problem is robustness. When saving
changes, you have to be very careful not to lose all
data altogether if the system where to crash or be
switched off at just the wrong moment in time.

Yet another problem is evolution. How do you deal
with old files when a new version of the application
requires the data format to be extended in some way?

All of a sudden, flat files turn out to be not so trivial
anymore. WeÕre getting bitten by the fact that having
data on-file and in-memory as totally disjoint forms
of the same is not that convenient after all.

Relational databases
The next solution is to adopt a database of some kind.
By now, this is almost always a relational database,
based on decades of work leading to a very sound
theoretical foundation for both the way to structure
data and the way to manipulate it.

There are many relational database implementations,
of varying complexity and sophistication. The most
common ones in Tcl are probably Oracle, Postgresql,
MySQL, and SQLite. The latter is quite interesting
because it is embeddable, i.e. part of the application,
whereas the others mentioned here are client/server
solutions using a separate process or even machine.

With a relational database, all the problems men-
tioned for flat files are solved. Access and modifica-
tion in subsets of the data are easy and quick. Data
no longer needs to be loaded on startup or saved on
exit. Changes are saved as transactions, so that fail-

ure is completely controlled: either a set of
changes makes it into the database or it does not
Ð there is no intermediate or inconsistent state.

The robustness of relational databases is summa-
rized with the ÒACIDÓ acronym: changes are
Atomic, Consistent, Isolated, and Durable. ItÕs
good to be able to truly rely on a database Ð after
all, a crashed program can usually be restarted,
but damaged and inaccessible data is essentially
unrecoverable.

This comes at a price, however.

Data in a database can be orders or magnitude
slower to manipulate than in-memory data. Try
comparing a relational ÒjoinÓ with a Tcl array
lookup, which are more or less the same opera-
tion, in abstract terms.

Apart from speed, databases tend to highlight the
huge difference between in-memory data and on-
file data. Something as simple as Ò$a($b)Ó in Tcl
ceases to be available. Instead, youÕre faced
with, say:

 [$db {select * from a where key = Ô$bÕ}]

É with not just a performance loss but also the
issue of accurate quoting when $b is an arbitrary
string.

In theory, relational databases are wonderful. In
practice, they can be a pretty lousy fit for pro-
gramming languages.

Other ways to store & manage data
There are a number of other solutions to dealing
with large amount of persistent data.

OODB Ð To overcome the impedance mismatch
between databases and programming languages,
a number of object-oriented solutions have been
built. The idea is to treat everything as an object,
and to then add a mechanism whereby objects
transparently move between their in-memory
form and a Òbacking storeÓ, using techniques
such as Òpointer swizzlingÓ.

A hybrid is Òobject-relationalÓ mapping (OR),
where objects are mapped to records in relational
databases.

The OODB approach will not be explored further
Ð one reason being that Tcl uses EIAS as basic
model, not OO. But more importantly, OODB
suffers from a major flaw when compared to re-
lational databases: they tie the navigational ac-
cess model to the data structure. In other words:
when using an OODB, you have to make choices
on how the data will be accessed, whereas the
relational model separates the data structure from
the way it is used. This is a very fundamental
issue, at the heart of many OODB vs. RDB de-
bates.

XML Ð Another approach is to fully abandon the
relational model and treat everything as a hierar-

- 2 -

chy. XML was designed as general-purpose inter-
change format, and is now occasionally touted as
solution as the model to use for storage and manipu-
lation of that data as well.

There is little benefit to doing so, actually. Apart
from the fact that it does not address the main issue
of avoiding the gap between on-disk and in-memory
formats, the main drawback is that by ignoring inher-
ent repetitive structure in large data-sets, it prevents a
number of optimizations and notational conveniences
from being used.

Lastly, XML data can in fact very efficiently be rep-
resented via the relational model.

Berkeley DB Ð This represents a range of different
database implementations actually (such as gdbm).
The model used is the key/value association. With
the *DBM packages, all data is stored by key, and
looked up by key, plus the ability to traverse all keys.

This can be summarized as the persistent equivalent
of Tcl arrays.

The speed of keyed access can be quite high, due to
the use of hashing, although that tends to break down
when large numbers of accesses are performed,
where hashing leads to excessive disk seeking.

This approach is not used much, despite the fact that
it has been around for ages. One reason is no doubt
that richer data structures are often needed, and that
as with OODB and XML solutions it often is useful
to be able to navigate through the data in other ways
than by key. A request such as Òfind all keys X for
which the value is 123Ó ends up traversing all data.

Metakit Ð Metakit is a mix between the flat-file, rela-
tional, and hierarchical database approaches. It uses
an inverted column-based format for efficient brute-
force searching across all data, and uses the Òstable
storageÓ algorithm for transacted changes.

The Metakit database is a bit of everything and a bit
of nothing. It has been used as basis for a relational
SQL layer, although the Tcl binding does not really
expose all functionality of the core.

The basic goal was to try and combine the powerful
relational database concepts while using a column-
wise internal structure for performance. To put it
another way: Metakit presents a row-wise interface to
what is essentially an ÒinvertedÓ format. It favors
fast access/searching, at the cost of slower updating.

Searches in Metakit can use hashing or binary search,
but they are usually done by brute force. The reason
this works so well is that copying is avoided to an
extreme degree. Iterating over one field in all rows
often outperforms other databases, even when they
use indexes (up to a point, of course).

Brute force searching also works well with imprecise
searches, i.e. ÒglobsÓ and regular expressions, where
a full scan is usually needed anyway. In Metakit, text
searches are cheap.

One consequence of the inverted design is that data

structures can instantly be extended or modified.
Adding a field to all rows is a matter of adding a
single column internally. This encourages grad-
ual development Ð extend the data as your code
grows, instead of designing it all up front. This
is a great match for the dynamics of scripting.

But Metakit is not perfect. Its Tcl binding does
not expose some of the more advance capabilities
of the underlying engine. And although quite
snappy, the design is far from optimal in terms of
performance.

Lastly, MetakitÕs documentation is lacking. It
takes some work to get the best mileage out of
the system.

Home grown Ð There will always be data stor-
age solutions that are custom-designed for a spe-
cific task. The challenge of any new solution is
of course to try and offer sufficient performance
and flexibility to cover an increasing number of
these cases. The trend towards using ÒstandardÓ
solutions appears to be increasing, no doubt be-
cause home grown code is much more work to
maintain, and because more and more open
source alternatives present themselves.

Client/server Ð Lastly, one could say that the
easiest way to use a database is to not use one at
all. Instead of incorporating code for storing and
manipulating data inside the application, the al-
ternative is to simply connect to a database on a
remote server. This relies on permanent network
connectivity Ð an obvious trend, as the rise of
websites with databases behind them shows.

Looking for alternatives
WouldnÕt it be great if we could somehow com-
bine SQLÕs relational foundation with MetakitÕs
column-wise performance and embed it all really
cleanly in Tcl?

This is precisely the aim of Ratcl and Rasql.

The strength of SQL is that it has a strong rela-
tional foundation that is extremely effective
(even though some will argue that SQL is se-
verely flawed). It is a great benefit to be able to
specify data processing tasks in a non-procedural
way, i.e, in terms of what needs to be done, not
how it is done.

Not only is it easier to say Òfind all the names of
the part numbers I have on this listÓ than Ògo
through each item on this list and lookup the
name associated with in the parts catalogÓ, it also
leaves more room for the underlying code to
choose between different implementations. In
cases where performance is not at a premium, the
benefit of not having to spell out the details
surely does simplify programming.

Then again, the SQL world is rife with examples
where changing the order of a request makes a
huge difference in performance, or where one is

- 3 -

expected to add an index briefly for use in a specific
task, and drop that index again to avoid hampering
other tasks. The last thing we need is a system where
we have to fight and apply counter-intuitive tricks to
get good performance.

If you think this is a minor issue, think again: people
abandon SQL all the time due to the unacceptable
performance they get (for whatever reasons).

Metakit proves that an inverted column structure has
the ability to outperform traditional databases, some-
times by an order of magnitude. Examples are
known for each and every database mentioned so far,
where Metakit was able to perform the same task an
order of magnitude faster. The very high-end ÒKxÓ
commercial database using a similar design shows
that the limits of scalability and performance have
not yet been reached, not by a long shot.

The challenge ahead, is to embed these techniques
into Tcl in such a way that one stops thinking in
terms of getting data ÒoutÓ of a database and storing
changes back ÒinÓ. Better still, we should try to cre-
ate a system whereby the whole concept of a Òdata-
baseÓ separate from the language fades away.

This is similar to the way Tk has pushed Ògraphics
contextsÓ, ÒportsÓ, Òscreen coordinatesÓ, ÒrefreshÓ,
and ÒupdatesÓ out of the mind of the application pro-
grammer. We donÕt think of Tk as a place to copy Tcl
data to. We create a view hierarchy in terms of wid-
gets, and then events do the rest.

There is a tremendous opportunity here. A lot of ef-
fort in programming deals with moving data around,
altering its shape and structure a bit, and transforming
it Ð often in very simple ways. At every point, we
have to think where to copy data from, what variables
to put it in, and how to deal with the end results Ð on-
screen and on-disk.

Already, Tcl has many types of data collections. In-
ternal data, such as channels, widgets, commands, as
well as external data, such as returned from glob, stat,
events, I/O.

Already, we lack a consistent way of combining this
data. An example of this is: give me a list of a read-
only files in a directory. In Tcl, we have to get a list
(glob), iterate over them (foreach), check the fileÕs
attributes (file stat), and generate a list with results
(lappend), Why canÕt we join the glob to the file stat
and apply a condition?

Relational algebra provides a simple formalism,
which is every bit as powerful as SQL (more so,
some will say), and which lets us specify (as opposed
to spell out) what needs to be done.

To get there, we need to Òlet go of the dataÓ., i.e. stop
thinking in terms of storing it in variables. Instead,
we need to set up our processing in terms of opera-
tors (and use variables to manage those structures).

We need to let Tcl do what it does so well: glue.

Intr oducing Ratcl
The Ratcl extension for Tcl takes a first step to-
wards a non-procedural approach to program-
ming.

To use Ratcl, you have to be prepared to place all
data under its control. Doing so will give you
low memory consumption, persistence, and per-
formance in return. Data in Ratcl can be manipu-
lated through relational operators (join, groupby,
and so on), set operators, expressions to produce
calculated results, conditions to define subsets,
and sorting.

The central concept in Ratcl is the ÒviewÓ Ð think
of it as the widget of the data world. A view is a
tabular structure with the following properties:

¥ Views consist of rows, indexed by position.

¥ Views consist of columns that can be referred
to either by name or by position.

¥ At every (row,column) position is a data item,
which is either a basic value such as an integer
or string, or a nested Òsub-viewÓ.

¥ All items in a column are of the same type.

The above terminology will be used in the rest of
this paper, but usually very similar designs un-
derlie most database systems. Here is a compari-
son with some familiar concepts:

¥ SQLÕs ÒtablesÓ are similar to views Ð they do
not support positional access, usually, nor
nested sub-views. In SQL, rows are called
records and columns are called attributes.
Views are indexable, they can also represent
result ÒrowsetsÓ, there is no need for cursors.

¥ The ÒrelationsÓ of pure relational database
theory differ from views in that neither posi-
tional access nor order is supported, for rows
as well as columns.

¥ Tcl arrays (and Python dictionaries) are very
similar to a view with a ÒkeyÓ and a ÒvalueÓ
column. However, views treat keys and values
on equal terms, and allow either of them to
consist of multiple columns.

It might be tempting to see views as matrices of
rows and columns, but this is in fact not such a
good idea. For one, matrices are uniformly
typed, whereas each column in a view can hold
different types of data. The other reason is that
views will be extended later to support dimen-
sions independent of row structure (so you could
have a 3-dimensional space of rows of arbitrary
complexity, not just single values).

Views are the central interface between Ratcl and
Tcl. In Tcl, a view is a command object. You
create a view explicitly and fill it with data in one
command:

 % set V [view A B C \
! ! { a1 b1 c1 a2 b2 c2 }]

- 4 -

To dump the view in Tcl, simply execute the com-
mand with no arguments:

 % $V
 A B C
 ÐÐ ÐÐ ÐÐ
 a1 b1 c1
 a2 b2 c2
 %

As you can see, V was a view with two rows and
three columns, named A, B, and C.

Yes, V was a view, not is, as you can see here:

 % $V
 invalid command name "::vlerq::o::1"
 %

Views are command objects in Tcl, but they require a
slightly modified style to be usable transparently in
Tcl. The details of this will be explained later, for
now it is sufficient to note that with view objects, you
should use ÒvsetÓ instead of ÒsetÓ when storing their
name in a Tcl variable (or array element). To repeat:

With views, use “vset” instead of “set” !

This idiosyncrasy is only needed in Tcl, btw. Other
languages can handle views like any other object.

With these preliminaries out of the way, letÕs see
what Ratcl has to offer.

A little tour
Ratcl includes a wide range of view operators. A few
basic examples are given here. See the Ratcl pages
on the web for more complete examples and some
preliminary reference documentation.

LetÕs assume the following views have been defined:

 % $R
 A B C
 Ð Ð -
 a b c
 d a f
 c b d
 % $S
 D E F
 Ð Ð Ð
 b g a
 d a f
 % $T
 A B C D
 Ð Ð Ð -
 a b c d
 a b e f
 b c e f
 e d c d
 e d e f
 a b d e
 % $U
 C D E
 Ð Ð Ð
 c d e
 c d f
 d e f
 %

Then we can do things like:

 % [$R product $S]
 A B C D E F
 Ð Ð Ð Ð Ð -
 a b c b g a
 a b c d a f
 d a f b g a
 d a f d a f
 c b d b g a
 c b d d a f
 % [$T project {A B}]
 A B
 Ð -
 a b
 b c
 e d
 % [$T if "B > 'b'"]
 A B C D
 Ð Ð Ð Ð
 b c e f
 e d c d
 e d e f
 % [$T join1 $U]
 A B C D E
 Ð Ð Ð Ð -
 a b c d e
 a b c d f
 e d c d e
 e d c d f
 a b d e f
 % [$T join0 $U]
 A B C D
 Ð Ð Ð -
 a b e f
 b c e f
 e d e f
 %

Note how we used Ò[$R product $S]Ó, instead of
Ò$R product $SÓ. The reason is that Ò$R product
$SÓ returns the name of a view command object,
not its contents. By adding an extra pair of []Õs,
we cause it to dump its contents, just like Ò$RÓ
does. We could also have used the following
equivalent sequence:

 % vset x [$R product $S]
 % $x
 A B C D E F
 Ð Ð Ð Ð Ð -
 a b c b g a
 a b c d a f
 d a f b g a
 d a f d a f
 c b d b g a
 c b d d a f
 % unset x
 %

View operations can be nested at will:

 % [[$T project {C D}] minus \
 [$U project {C D}]]
 C D
 Ð -
 e f
 %

- 5 -

And lastly, views can be tied to a Metakit data-file:

 % vset M [mkopen mydata.db]
 % $M names
 dirs
 % [$M sub 0 dirs] names
 name parent files
 % [[$M sub 0 dirs] sub 0 files] names
 name size date contents
 %

HereÕs an example combining much of the above:

 % vset D [[mkopen mydata.db] sub 0 dirs]
 % [[$D project {parent name}] sort]
 parent name
 ÐÐÐÐÐÐ ÐÐÐÐÐÐÐÐÐÐÐ
 -1 <root>
 0 doc
 0 lib
 2 Class1.0
 2 ClassyTk1.0
 2 Extral2.0
 2 Mpexpr10
 2 Tktable2.7
 (etcÉ)

Here is the set of view operators currently available:

add addcol all as at blocked cmp col cols
concat counts decref delete divide expr first
flatten get groupby if ifmap incref insert
intersect join join0 join1 last mapcol maprow
meta minus names norows nspread omitcol
omitrow pair pick print product project
rename repeat reverse row rowid rows set
single slice sort sortmap spread sub subcat
types union uniqmap unique vid

The list of operators is still evolving, but as you can
see all key relational- and set-operators are included.

Advanced aspects of Ratcl
There is a lot more to say about Ratcl than will fit in
this paper. A few highlights:

Calculated fields Ð data can be generated as a result
of calculations based on other fields:

 % [$T pair [$T expr F:I {B > 'b'}]]
 A B C D F
 Ð Ð Ð Ð -
 a b c d 0
 a b e f 0
 b c e f 1
 e d c d 1
 e d e f 1
 a b d e 0
 %

The current parser is not yet able to handle callbacks,
but once this is implemented, arbitrary Tcl-based
computations will also be usable inside views.

Derived views are cheap Ð views are ÒlazyÓ, i.e. the
information extracted from views is produced on-
demand, at the latest possible moment in time. For
example, setting up a sorted view is instant, only
when rows in it are accessed does the sorting take
place. For the same reason, access to views stored on

file can be extremely quick, since only a minimal
amount of information is actually read in.

This has profound implications for situations
where only a subset of the results is used. One
example is the presentation of views on-screen:
large views need not be fully accessed when only
a small part of the view is showing on the screen.

Sub-views Ð in contrast to traditional relational
database systems, views can be nested. The re-
sult of the standard ÒjoinÓ and ÒgroupbyÓ opera-
tors is in fact just that: a view with nested sub-
views. This greatly simplifies processing, and is
dramatically more efficient than producing a re-
sult where all data is expanded to fully ÒflatÓ
tabular form.

The ÒflattenÓ operator can be used to force a flat
operation when needed, though.

As all other operators, ÒjoinÓ and ÒgroupbyÓ are
lazy performers, with everything happening be-
hind the scenes in a totally virtualized manner.
This means, for example, that joining two huge
views takes little more than two integer vectors
of memory, which are set up the moment access
to the result is requested.

Cleanup Ð the view command objects of Ratcl
use an elaborate reference counting mechanism
to make sure they are kept around as long as
needed, but no longer.

The consequence has already been seen in the
use of ÒvsetÓ instead of ÒsetÓ. The reason for this
is that an Òunset traceÓ is needed in Tcl to make
sure views are cleaned up when its variable goes
away (implicitly on return, in the case of local
vars in a procedure).

A somewhat unusual aspect of view command
objects is that by themselves they will self-
destruct after a single call. This allows the com-
bination of multiple view operations into a single
statement, without creating uncollected ÒdebrisÓ.
The flip side is the need to use ÒvsetÓ. This re-
striction could be lifted if a future version of Tcl
were to make the standard ÒsetÓ just a little
smarter, by the way.

Related packages
For reference, here is a brief list of Tcl packages
which offer some of the same functionality as
Ratcl:

¥ NAP (ÒNumeric Array ProcessorÓ) by Harvey
Davies offers vectorized processing of data. It
is geared towards numeric processing whereas
Ratcl works equally well with strings.

¥ TclRAL by Andrew Mangogna is Relational
Algebra system that stays very close to the
pure relational model, using the ÒrelvarÓ and
ÒrelationÓ terminology. It is entirely value-
based, and as such a good fit for Tcl, but it has
no persistence, other than dump/restore.

- 6 -

As has become clear with Metakit over the years,
there are very few systems around with relational
algebra as basis, and offering the persistence of data-
bases without adopting the SQL language.

The case for Ratcl
Ratcl aims to bridge that gap between databases and
Tcl, offering the benefits of both as much as possible.

By ÒclaimingÓ control over all data, it provides very
efficient view ÒoperatorsÓ as well as persistence.

The current set of operators is already reasonably
complete, but a number of planned improvements
will take this even further, such as allowing arbitrary
bits of Tcl code inside view expressions Ð very simi-
lar to the way TclÕs ÒexprÓ commands adds an alge-
braic notation to Tcl while still allowing Ò[É]Ó inside
any expression to escape back to Tcl.

The central concept is the view, which maps to a Tcl
command object Ð much like widgets map low-level
GUI concepts via Tk. Views can be passed around
and combined at will. Unlike most commands, views
represent lazy evaluation, where the actual processing
takes place behind the scenes at various points in
time. Setting up complex nested calls to view opera-
tors is about preparing for processing, rather than
having data handling actually being done.

As a consequence, Ratcl can do a lot of internal op-
timization, delaying file access and computations
until the time they are actually needed. Combined
with the column-wise structure of data, this often
leads to a substantial reduction of processing time.

The efficiency of views in Ratcl will be presented in
the next section.

Size and performance
The Ratcl extension consists of a tiny Òcore engineÓ
coded in C, a bit of Tcl glue code, and some auxiliary
data. A complete system, including all the relational
and set operators, a Metakit data file reader, and an
expression parser is about 75 Kb. With compression,
a standalone exe containing all of the above as well
as a Zlib de-compressor ends up being 22 Kb.

The source code of all the pieces of Ratcl amounts to
some 3000 lines of code, half of which is C.

Small is beautiful, not just as an academic challenge,
but because less code means fewer places for bugs to
hide, and fewer cases to deal with and test. The lay-
ering used in Ratcl means that the system consists of
a small set of carefully chosen components, each
highly dedicated and aimed at only performing a few
tasks, but doing those real well.

The performance of Ratcl has not been optimized at
all so far. Key operations such as join and groupby
use algorithms which are far from optimal right now,
the reason for this is that this implementation focuses
on functionality and took many shortcuts to get the
basics working, regardless of overhead.

Nevertheless, Ratcl can open and access Starkits,
which are Metakit data files, faster than the
Mk4tcl extension itself. In plain integer column
iteration, Ratcl can outperforms Mk4tcl by a fac-
tor 4, in string iteration it is about on par.

In another test, using an Apache log file with
about a million entries, it takes 1.66 sec to locate
3 copies of a specific IP address in todayÕs basic
Ratcl (Metakit: 2.18, SQLite: 3.85). All timings
are done of a relatively slow PIII/650 notebook
to get a decent timer resolution.

The comparison with SQLite is a bit unfair, since
one should use an index, in which case the time
drops to 0.32 mSec. Then again, note that adding
the index took 37 sec, and dropping it again took
another 3 sec, so the choice of what to index is an
important one to make up front.

To construct a comparable case in Ratcl requires
creating a view which projects the key and then
sorts it. With sorted data, binary search can then
be used to locate a key. In Ratcl, project + sort
take about 0.4 sec, and searching takes 28 micro-
seconds).

The conclusion at this point should be that al-
though RatclÕs brute force is surprisingly effi -
cient, it is no match for indexed access when the
number of records involved is large (weÕre com-
paring O(N) brute force with O(log N) binary
search). At this point, similar tricks must be used
to gain optimized access, after which a Ratcl-
based solution again outperforms other databases
by an order of magnitude. Similar results and
ratios can be expected with hashing, by the way.

Now, as everyone doing benchmarks knows, itÕs
fairly easy to ÒconstructÓ examples that support
any type of conclusion. Therefore, in the follow-
ing discussion all further comparisons have been
omitted.

Instead, letÕs simply examine how long it takes to
perform certain tasks using the high-performance
primitives built into Ratcl (but not yet used very
much!).

Opening the above data file takes 720 mSec.
Using a primitive call, locating 3 ints in a million
on file takes 20 mSec (80x as fast as RatclÕs cur-
rent dumb code).

One point to make is that most database timings
are severely skewed towards single accesses, a
metric which is usually irrelevant. What matters,
is the performance figures when large amounts of
data are processed as a whole. This is where
databases can get dogged down to hours of proc-
essing time and I/O-bound disk thrashing. This
is also where RatclÕs column-wise model tends to
make a dramatic difference.

The above example of finding 3 matching ints in
a million takes exactly as much time regardless
of the number of results Ð i.e. 20 mSec to find all
values larger than K, for any K.

- 7 -

At the time of writing, not many more performance
results are available. As mentioned before, Ratcl
does not yet hook into the optimized vector-oriented
code that is part of the system Ð most of the effort so
far has simply gone into getting the data structures
ready for vectorized use, and implementing basic
functionality.

One more result which ought to give an impression of
what lies ahead for joins and groupby is available: a
hash-based algorithm which identifies all identical
values in a set of the same million integers as above,
takes 0.15 sec. For comparison, TclÕs Òlsort Ðunique
ÐintegerÓ takes 3.7 sec to produce the same results
(about 20,000 groups). Note also that these integers
consume 4 Mb memory in Ratcl and 28 Mb in Tcl.

The explanation for these results, which show orders
of magnitude higher performance figures than current
database systems, is that the combination of an in-
verted column-wise design with a very efficient data
format which is identical on-file and in-memory,
work together to take maximum advantage of todayÕs
CPUs. Not only is a column-wise structure optimal
for file access, it also lets CPU caches work at their
best. All it takes is a highly vectorized internal de-
sign of the underlying code engine.

Reasons to use SQL
Despite these nice results in Ratcl, there are still a
number of reasons to use SQL in an application:

¥ ItÕs a standard Ð there is a lot of code based on SQL
and a lot of experience with it.

¥ ItÕs convenient to write tasks in a non-procedural
way. The ability to think in terms of what instead
of how is a huge time-saver, even if performance
might suffer a bit.

¥ And lastly: you may not have a choice, if your boss
dictates it. The same holds for Tcl itself, of course!

SQL is a complete language of its own (several in
fact, sometimes frustratingly so). By adding SQL to
an application, you are bound to get more or less of
an impedance mismatch Ð quoting rules change, vari-
able naming and expansion changes, even simple
operators change (Ò<>Ó versus Ò!=Ó for example).
There is also some duplication of functionality, such
as SQLÕs ÒlikeÓ versus TclÕs Òstring matchÓ. And
lastly, you may find that SQL does not offer regular
expressions, and that TclÕs ÒregexpÓ cannot be used
for string searches in data managed by the database.

SQL is a language (from the 60Õs, in fact) - and its
use in Tcl unavoidably implies working with two
sometimes very different ways of looking at data.

Even though SQL is quite well standardized, the
availability and lack of features differ widely across
different database implementations and their bindings
to Tcl. There are database independent wrappers and
there is ODBC Ð but be prepared for quite a bit of
tinkering. SQL is nice, but definitely no panacea.

Intr oducing Rasql
Rasql aims to bridge the world of databases and
Tcl, but in a very different way than Ratcl.

Rasql is an implementation of SQL, and as such
offers the standard SQL notation for those who
choose to work this way.

The crucial point to make is that Rasql in based
on Ratcl Ð it is in fact a thin layer over Ratcl,
parsing and translating SQL statements to rela-
tional algebra operations in Ratcl.

This has a several implications:

¥ Rasql simply presents itself as an extra set of
view operators, the most important one being
called ÒselectÓ.

¥ You can combine views constructed with Ratcl
with RasqlÕs standard SQL syntax.

¥ Views use the same inverted-column design,
and are very efficient in space and time.

¥ The result of a Rasql ÒselectÓ is a view.

¥ There is some usefulness in having sub-views,
but there are also some limitations on their use
inside SQL, which was not designed for them.

That last note means that Rasql can also be used
as basis for further Ratcl operations. So now you
get the best of both worlds: use SQLÕs non-
procedural notation when it is convenient, yet
switch to view operators as needed.

Rasql is not a gimmick. It handles nested sub-
queries and quite advanced cases of SQL. Its
design differs fundamentally from most SQL
implementations, in that it translates non-
procedural requests to set-wise manipulation of
data, just as Ratcl does Ð this takes full advantage
of the internal column-wise design.

At least four different implementations of more
or less complete SQL engines on top of Metakit
have provided the insights needed to accomplish
this. Rasql combines this experience and brings
it to Ratcl.

RasqlÕs limitations
One pretty severe limitation of Rasql is that it is
work in progress. Its last implementation is from
2004, and was based on a predecessor of Ratcl.
This code is not ready for serious use, and needs
to be rewritten to use the latest Ratcl code base.

Another limitation of both Ratcl and Rasql right
now, is that there is no built-in support for storing
NULL. This can be emulated quite efficiently by
adding an extra flag to every NULL-able column,
but computations with such an approach can be-
come a bit tricky. The reason NULL has not
been added yet is that it requires a change to the
Metakit file format to allow persisting views
where some data items can be NULL.

- 8 -

The use of NULL is extremely controversial in the
formal relational database world. Still, to provide
sufficiently compatible support for SQL it will need
to be supported in Ratcl and Rasql. Sub-views also
offer a way to avoid NULLs in join and groupby.

Rasql does not aim to support SQL 100% (if that
were even possible). The goal of Rasql is to support
enough of the language to perform all common tasks,
and to offer as few surprises to people who are used
to SQL as possible. Rasql is a gesture towards what
has become a de-facto standard, not an endorsement,
and certainly not ÒYet Another SQL DatabaseÓ.

Lastly, Ratcl and Rasql are single-process in their
current design. A number of high-performance con-
cepts for contention-free parallelism in Metakit will
be ported to Ratcl (and hence Rasql), eventually.

Note that this does not mean that Ratcl and Rasql are
single-user. Multi-user scenarios will be fully sup-
ported as client/server option, once transactions are
added back in, with all the aspects of ACID (atomic-
ity, consistency, isolation, and durability) covered.

Curr ent status
Right now (early May 2005), the Ratcl package is
about to enter its second public release. This release
supports general-purpose views, a wide range of view
operators, read-only access to Metakit-compatible
data-files, and simple serialization of views to file.

The current performance level of Ratcl is ÒdecentÓ,
meaning itÕll compare just fine with other solutions,
but also that it is still far from the intended levels.
The reason for this is that a lot of the internal vector-
oriented processing has not yet been activated.

This Ratcl release will not be suitable for production
use, itÕs really a technology preview Ð to allow others
to get more experience with the design and comment
on it, and to act as a baseline for optimization.

The stability of Ratcl is already very good, i.e. it does
what it should do. Robustness is not quite there yet,
i.e. if used incorrectly, Ratcl still falls over far too
often to be usable in general.

There is a nice introduction to Ratcl on the web, but
it refers to an earlier implementation Ð some details
of the syntax have changed by now. The semantics
of it all is largely unchanged, though.

Rasql will not be released in public for some time to
come, although the code will be made available as
soon as the port to the latest code base is completed.

The Vlerq research project
Ratcl and Rasql are part of a research project called
ÒVlerqÓ. Vlerq is an acronym for:

Take Vectors
Add a Language

Make it Embeddable
Use the Relational model

Include a Query mechanism

Ratcl and Rasql are the result of using several
tools being developed in / for Vlerq. In particu-
lar, a high-performance vectorized virtual ma-
chine called Thrive (Threaded Interpreter Vector
Engine), and a systems-level language called
Thrill (Thrive Language Layer).

The Thrive VM is a very tightly coded stack ma-
chine in C with an emphasis on handling vector
operations and persistent data with maximum
efficiency. Thrive includes automatic garbage
collection. The Thrill language is relatively low-
level, and is loosely based on Forth and other
ÒconcatenativeÓ languages. Most of the Ratcl
logic is coded in Thrill.

Much of the expected performance of Ratcl and
Rasql are due to the fact that Thrive and Thrill
have been designed and implemented from the
ground up to provide the necessary functionality.
The results so far and the extreme compactness
of the code show that by segmenting a project
into different conceptual layers (combining C,
Thrill, and Tcl), far more can be accomplished
than with a single-language design.

In a way, the Vlerq project is really a tribute to
John OusterhoutÕs vision on scripting as a glue
language.

Longer-term goals
The use of views as central mechanism for data
exchange is only the beginning of a considerably
more ambitious goal: to create a data-flow driven
framework whereby processing becomes com-
pletely automatic.

The promise of data-flow is that it allows you to
move away from Òthinking about all the conse-
quences all the timeÓ. Instead of applying
changes to data and hard-coding the conse-
quences at each point where such changes are
made in an application, data-flow computing
provides the same capability as what spread-
sheets have been offering for decades.

With data-flow as driving mechanism, there
could be a revolution similar to event-driven
programming in user interface development, but
permeating all the aspects of application devel-
opment this time around.

To achieve this, the distinction between data on-
file and in-memory has to be removed, which is
precisely what RatclÕs ÒviewsÓ are for. This can
only be done by Òtaking the data out of TclÓ, i.e.
adopting a coding style whereby Tcl manage
dependency structures, but not directly the data
itself. This is nothing new: the same holds for
GUI components in Tk.

Getting data-flow working Òall the way to the
GUIÓ will one day require some new Òdata
awareÓ widgets. Discussion on this is beyond the
scope of this paper.

- 9 -

Conclusions
This paper has presented some early results of Ratcl
and Rasql, two packages for Tcl that aim to simplify
data manipulation.

As several preliminary tests with Ratcl show, the per-
formance that can be achieved is at least an order of
magnitude higher than traditional databases.

The reason for this is that an ÒinvertedÓ column-wise
data structure offers significant benefits for vector-
oriented data processing algorithms.

The consequence is that even when not using any
auxiliary ÒindexesÓ, many tasks will be surprisingly
efficient. This means that we can have your cake and
eat it too: the flexibility of not having to design rigid
data models up front, combined with performance
which exceeds most databases, and sometimes even
TclÕs performance with itÕs own data structures.

With Ratcl and Rasql, it becomes feasible to Òjust
start codingÓ, which is one reason why scripting lan-
guages can be so effective. This should of course not
be taken as an excuse to design scripted applications
badly, or worse, to skip the design phase entirely!

The column-wise format of persistent data makes
adding columns trivial and instant, and the very high
performance of joins, groupby, and sort means that
the usual agony of choosing just the right set of indi-
ces and entering SQL statements in just the right or-
der becomes a thing of the past.

What this means is that with data in Ratcl, you can
get the best of everything:

¥ Data structures which are easy to define and to
later extend or alter.

¥ Efficient operations on large amounts of data.

¥ Compact representations in memory and on file.

¥ Tcl-like performance as well as robust persistence.

Much of this is not new. People programming with
APL, J, and K have known for decades that a wide
range of processing tasks can be done far more effi -
ciently than is commonly known Ð and that a vector-
ized language can be extremely concise yet flexible.

What Ratcl and Rasql bring to the table is the ability
to get the best of both worlds. By introducing view
command objects as the one generic data structure for
everything, and by embedding this very tightly in Tcl,
the result is a system in which data manipulation be-
comes very convenient, avoiding the usual looping
idioms and dealing with entire data sets in one step.

Ratcl, and especially Rasql, are still in their infancy.
Although all results presented so far are based on
working code, that code still is being revised daily.

It is hoped that the main benefits (and trade-offs) of
the approach presented here will help others see how
the impedance mismatch between traditional database
systems and a programming language such as Tcl can
be reduced, by using ÒviewsÓ as general-purpose data

structure, combined with relational algebra, set
operators, and array operators.

The Vlerq project which has become the founda-
tion of Ratcl and Rasql has its own home page on
the web at http://www.vlerq.org - a wiki-based
area for all discussion and news related to this
project.

All software described in this paper is available
under the MIT open source software license.

Acknowledgments
I would like to thank Mark Roseman and Steve
Landers for the many discussions which led to
the design of Ratcl, Rasql, and Vlerq over the
years. I would also like to thank them for their
help and review of this paper.

Much of the Vlerq architecture stems from the
experience gained with the Metakit database li-
brary in over a decade. I would like to thank
everyone who directly or indirectly helped me
refine and improve that system, often simply by
pushing for more performance or identifying
subtle bugs and design limits.

A very big thank you also to Mike Doyle and
Eolas Technologies Inc, for funding the Vlerq
project since early 2005, which has allowed me
to make very substantial and rapid progress with
the Ratcl and Rasql software.

References
Ratcl home Ð http://www.equi4.com/ratcl.html

Rasql technology preview and online demo Ð
http://www.equi4.com/preview/

Metakit Ð embedded database extension for Tcl
(Mk4tcl), http://www.equi4.com/metakit.html

The Tcl'ers Wiki - a collaborative web site for the
Tcl community, http://wiki.tcl.tk/

NAP Ð Numeric Array Processor by Harvey
Davies, http://wiki.tcl.tk/4015 /
http://tcl-nap.sourceforge.net/

TclRAL Ð by Andrew Mangogna,
http://wiki.tcl.tk/12348 /
http://tclral.sourceforge.net/

© 2005 Jean-Claude Wippler <jcw@equi4.com>
[http://www.equi4.com/docs/tcl2005e/ratcl.pdf]

- 10 -

