
Thinking in Erlang

A GUIDE TO FUNCTIONAL PROGRAMMING IN ERLANG FOR THE
EXPERIENCED PROCEDURAL DEVELOPER

Robert Baruch
autophile@zoominternet.net

Version 0.9.1
February 5, 2007

Thinking in Erlang RIGHT HEADER HERE

Copyright

This work is licensed under the Creative Commons Attribution-Share Alike 2.5 License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.5/ or send a letter
to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

2

Thinking in Erlang RIGHT HEADER HERE

Contents
1 Introduction 4

1.1 What this document is not . 4
1.2 What this document is . 4
1.3 Porting code to Erlang . 4
1.4 Hello, World . 5
1.5 Compiling and running hello.erl . 6

2 Scope of variables 7
2.1 No global state . 7
2.2 Dealing with no global state . 8

3 Matching 9
3.1 Basic matching . 9
3.2 Function argument matching . 11
3.3 If and case . 11
3.4 Guards . 13

4 Loops 14
4.1 Recursion . 14
4.2 Less painful loops . 17
4.3 Summary of less painful loops . 18

5 Processes 19
5.1 Doing two things at once . 19
5.2 Interprocess communication . 20
5.3 Process termination reasons . 21
5.4 Processes as objects . 22
5.5 Generic servers . 24
5.6 Distributed Erlang . 25
5.7 Synchronization not necessary . 25

6 Dealing with errors 26
6.1 Let it fail . 26
6.2 Workers and supervisors . 27

References 31

3

Thinking in Erlang RIGHT HEADER HERE

1 Introduction

1.1 What this document is not

If you expected to learn programming from this document, you will be disappointed. You are
expected to know either C++, C#, or Java fairly well. This document is also not a reference for
Erlang. There’s plenty of Erlang documentation, so there’s no sense in padding this one with
duplicated information.

Furthermore, we’re not going to justify the use of Erlang over any other particular program-
ming language, functional or otherwise. It is assumed that you’re reading this document because
you want to do something in Erlang, which implies you’ve already made the decision to use it,
or at least try it out.

Finally, you won’t find an Erlang installation manual here. Again, there are plenty of re-
sources on the web for you to install Erlang on your particular environment.

1.2 What this document is

Erlang is a functional programming language. This is very different from C++, C#, and Java,
which are procedural programming languages. Procedural languages stress organization of data,
and sequences of instructions which operate on some global state. Functional languages, on the
other hand, treat programs as evaluations of functions without a global state.

Because there is no global state, functional programming languages may seem bizarre to the
expert procedural software architect. We’ll try to tie in concepts from Java to Erlang to make
understanding easier. The author is a Java veteran, has long abandoned C++, and has never seen
the need to move to C#, so most of the analogies will be drawn from Java.

1.3 Porting code to Erlang

Porting code from a procedural language to a functional language is not easy. You have to
understand what the code is trying to accomplish. Because the paradigms are so different, you
will be designing the new code from scratch. This is why it is important to know how to think in
Erlang.

4

Thinking in Erlang RIGHT HEADER HERE

1.4 Hello, World

You knew it was coming, so let’s get it out of the way.

1 -module(hello).
2 -export([hello/0]).
3
4 hello() ->
5 io:fwrite("Hello, World!∼n", []).

Figure 1: Hello, World!

Very strange-looking, but let’s tie this to things you already know. Line 1, the module decla-
ration, is like a class declaration. It says that this file, or module, is named hello. Note that unlike
C++ or Java, module names must begin with a lower-case letter. This is because Erlang words
beginning with an upper-case letter are used for variables only.

Line 2 shows which functions are allowed to be called from outside the module. A function,
by the way, is Erlang-speak for method. Thus, with export, we have the equivalent of public
and private methods. Since there is no inheritance in Erlang, there is no equivalent to protected
methods.

The brackets in the export statement indicate a list. Erlang lists are like arrays, but they may
grow and shrink, and have elements inserted and deleted. Until we get to more complicated
examples later, just accept for now that this list has one element.

The hello/0 shows that we are going to export the function named hello, in its 0-arity incar-
nation. Arity is simply the number of arguments a function takes. You can have two functions of
the same name with different arities, but two functions of the same name with the same arity are
actually the same function. We’ll see that later as well.

Line 4 is a function declaration. The arrow indicates that we are going to begin the body of
the function, which ends in a period.

Line 5 is the body. We are calling the fwrite function in the io module. io:fwrite is like printf
in C or PrintStream.printf in Java (1.5 or above). The first argument is the format string, while
the second argument is a list of things the format string will use. The empty brackets here show
that the list is empty.

The tilde character (∼) is equivalent to the % character in C’s printf or Java’s
PrintStream.printf. ∼n is the format specifier to output an environment-specific newline –

5

Thinking in Erlang RIGHT HEADER HERE

although in practice, only a linefeed (ASCII 0x0A) is emitted, so Windows environments (and, I
guess, IBM OS/390 systems which use NEL instead of LF or CR) are not well-supported.

1.5 Compiling and running hello.erl

Let’s tackle compiling and running hello.erl in the Erlang interactive shell:

ekmac:~ ek$ erl
Erlang (BEAM) emulator version 5.5.2 [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.5.2 (abort with ^G)
1> c("hello.erl").
{ok,hello}
2> hello:hello().
Hello, World!
ok
3> init:stop().
ok
4> ekmac:~ ek$

Figure 2: Running hello.erl

The first command we issue compiles hello.erl from the current directory. You can always
put in an absolute or relative path here. Note that this command takes the form of a function call,
and ends with a period.

Next, we call the hello/0 function in the module hello. This is very similar to calling a
static method on a class. Again, we end the call with a period. The “ok” at the end is just the
return value of hello/0 – functions return the value of the last statement, which in this case was
io:fwrite/2, which returns the value ok.

Finally, to shut down and exit the shell, we call the function init:stop/0.

6

Thinking in Erlang RIGHT HEADER HERE

2 Scope of variables

2.1 No global state

As stated briefly earlier, Erlang has no global state. This means no global variables. And while
we also said that modules were analogous to classes, although classes can have attributes, mod-
ules cannot have variables.

The scope of an Erlang variable is limited to the function it is declared in. Furthermore, once
defined, it cannot be assigned to again: that would imply that the function has a state, which it
does not.

Finally, you don’t declare Erlang variables as being of a particular type. The type is deter-
mined at runtime, since there isn’t any way to confuse one type with another, and there is no way,
within the same scope, to retype a variable. Here’s an example.

Eshell V5.5.2 (abort with ^G)
1> X = 1.
1
2> X.
1
3> X = 2.

=ERROR REPORT==== 17-Jan-2007::19:58:46 ===
Error in process <0.30.0> with exit value: {{badmatch,2},[{erl_eval,expr,3}]}

** exited: {{badmatch,2},[{erl_eval,expr,3}]} **
4> F = 1.0.
1.00000
5> S = "abc".
"abc"
6> L = [1, 2, 3].
[1,2,3]
7> L2 = [$a, $b, $c].
"abc"

Figure 3: Various variables

When a variable is assigned a value, it is said to be bound. Once a variable is bound, it cannot
be bound again. Paraphrasing a US President: “Bind me once... good on... good on you. Bind
me... you can’t get bound again!”

In line 2, we are asking to read back the value of X. Line 3 gives an error because you cannot
rebind variables in the same scope. The error returned is “badmatch”, which will we will explain

7

Thinking in Erlang RIGHT HEADER HERE

later.

Line 4 shows a float, line 5 shows a string, line 6 shows a list, and line 7 shows a list of
characters ($x is the Erlang equivalent of C and Java ’x’, so that $\n is a newline character and
$$ is a $ character).

Note that L2 displays as a string. This is because there isn’t really a string type in Erlang.
Strings are implemented as lists of characters – in fact, there is no character type, either, so strings
are really just lists of integers. So although you could have a list of 16-bit integers and call it a
Unicode string, Erlang’s support for Unicode is nonexistent. Working with Unicode in Erlang is
beyond the scope of this document. Suffice it to say that while representing a Unicode string is
trivial, comparing two Unicode strings using proper Unicode normalization, or even determining
whether a Unicode character is whitespace, is not implemented.

2.2 Dealing with no global state

By this time, your brain has probably siezed up. Your typical C or Java program must use i++
at least once1. And yet you can’t do that in Erlang, because it implies that you are changing the
value of a variable.

This is where thinking in Erlang (or thinking functionally) comes in. Leaving aside i++, let’s
look at S /= 1000. Perhaps S is in milliseconds and you want to convert it to seconds. Because
we’re using Erlang, this would have to be implemented as something like S2 = S / 1000.

At this point there’s a riot going on. “You just doubled your memory requirement!” someone
shouts. “That’s wasteful!” another one yells. People start turning over police cars to chants of
“Erlang sucks!”

Well, why would we keep S around after the S2 assignment? Do we need both S and S2? If
so, we have no choice but to keep them both around. If we don’t need S, then after the assignment
it can be thrown away. Or, if we only need S2 once, we could even dispense with S2 and use a
temporary where we need it. Furthermore, once the function where S was defined is ended, we
no longer need S.

The point is that once you get rid of reassignments, the compiler’s optimization job becomes
much easier.

1You usually see this in loops. See the chapter on Loops for this issue

8

Thinking in Erlang RIGHT HEADER HERE

Of course, if you try this in the Erlang shell, the shell has no choice but to keep S around
because it doesn’t know what you are going to do next.

3 Matching

3.1 Basic matching

Suppose you had a tuple of three elements. A tuple is like a list, except you generally don’t
grow or shrink it, and it does not have a tail like a list does (more about that later). Tuples are
represented in Erlang by curly braces, thus { 1, 2, "burger" } is a tuple consisting of three
elements. The first two are integers, and the third is a list.

Now what if this tuple were passed to your function called middle/1, which takes this as a
variable, thus: middle(Arg). You want to return the second element.

You could use erlang:element/2, which returns the Nth element of a give tuple. This will
work for tuples of any size. But if you know that your tuple always consists of three elements,
there is an easier way:

1 middle(Arg) ->
2 { _First, Second, _Third} = Arg,
3 Second.

Figure 4: Matching a tuple

The assignment in line 2 is a match. First of all, if Arg is not a tuple of three elements, the
match will fail with a badmatch error, and the function will fail. But that’s OK, because we will
only pass middle/1 a tuple of three arguments (but see below if you don’t!).

Secondly, each element in the tuple will be matched up against the left hand side, and bound.
The variables that begin with an underscore are also bound, but is an indication that the value
is never actually used in the scope. You could also just as easily have written { _, Second, _
}, which makes use of the special variable _ which is never bound, but that may not be as clear,
depending on the context.

Thus, given { 1, 2, "burger" }, the match will assign 2 to Second, and ignore the other
elements. The function then returns Second.

9

Thinking in Erlang RIGHT HEADER HERE

As mentioned above, if middle/1 is passed anything other than a tuple or a tuple without three
elements, then middle/1 will fail with a badmatch error:

2> test:middle({ 1, 2, "burger" }).
2
3> test:middle("burger").

=ERROR REPORT==== 18-Jan-2007::19:08:39 ===
Error in process <0.30.0> with exit value: {{badmatch,"burger"},

[{test,middle,1},{shell,exprs,6},{shell,eval_loop,3}]}

** exited: {{badmatch,"burger"},
[{test,middle,1},{shell,exprs,6},{shell,eval_loop,3}]} **

Figure 5: A bad match

The badmatch information tells us that we tried to match “burger” against something
that failed at test:middle/1 (which was called from shell:exprs/6, which was called from
shell:eval_loop/3)2.

While you cannot match just the second element in a tuple of any arbitrary size without call-
ing erlang:element/2, you can match arbitrary lists. Here is an example showing list matching:

1 middle([_First, Second |_Tail]) ->
2 Second.

Figure 6: Matching a list

This syntax in line 1 shows that we must have two elements, followed by the rest of the list.
The rest of the list is a list, so matching [Head | Tail] to [1, 2, 3, 4, 5] would set Head to 1 and
Tail to [2, 3, 4, 5]. If the list has no tail, then the tail gets set to the empty list, []. This means
that matching [Head | Tail] to [1] would set Head to 1 and Tail to []. Matching [Head | Tail]
to [] would fail, because Head needs an element, and there are no elements in the list.

So you can see that line 1 requires the list to have at least two elements. If the list has less
than two elements, _First and Second could not match, and you would end up with a badmatch
error.

2See the chapter on Dealing with errors for more information.

10

Thinking in Erlang RIGHT HEADER HERE

3.2 Function argument matching

When trying to determine which function to run, Erlang matches not only the name of the func-
tion, but also the arguments given by the caller to the function. The following example shows
the tuple-matching example in a more compact way using argument matching:

1 middle({ _First, Second, _Third}) ->
2 Second.

Figure 7: Matching in function arguments

We could even combine the two previous examples – extracting the second element in a
tuple, and extracting the second element in a list – by defining multiple alternatives for the same
function:

1 middle({ _First, Second, _Third}) ->
2 Second;
3 middle([_First, Second, |_Tail]) ->
4 Second.

Figure 8: Matching and function alternatives

On lines 1 and 3 we have defined two middle/1 functions. For each function call, Erlang goes
through each alternative for the function, attempting to match the arguments to the alternative.
Here we see we have two alternatives. The first one only matches if the passed argument is a
3-tuple. The second matches only for a list of at least two elements.

It is important to order the alternatives properly. Erlang will stop at the first match it finds, so
make sure you order the alternatives from most restrictive to least restrictive.

Notice also that the first alternative does not end in a period, but in a semicolon. That tells
the compiler that another alternative for the function is coming. If we had used a period on line
2, the compiler would think that line 3 is a redefinition of middle/1, which would be an error.

3.3 If and case

As in C and Java, there are if statements and switch statements – these are called if and case in
Erlang. If and case have return values, which are the result of the body that is executed when one
of the choices is true (for if) or matches (for case). Here is an example:

11

Thinking in Erlang RIGHT HEADER HERE

1 is_even(X) ->
2 if
3 X rem 2 == 0 ->
4 true;
5 true ->
6 false
7 end.

Figure 9: Example of if

You can have as many clauses in an if-statement as you like. Erlang will check each one, and
the first one that evaluates as true has its body evaluated and returned. Because the if statement
is a value-returning statement, you could assign the result to a variable and use it further down in
the function, i.e. Ret = if...end.

The case statement matches against patterns:

1 many(X) ->
2 case X of
3 [] ->
4 none;
5 [_One] ->
6 one;
7 [_One, _Two] ->
8 two;
9 [_One, _Two, _Three |_Tail] ->

10 many
11 end.

Figure 10: Example of case

Here we are matching X against patterns. The first pattern to match has its body evaluated
and returned. The return values here are not strings, because they are not surrounded by double
quotes. Nor are they variables, because they do not begin with an upper case letter. They are
atoms, which are the equivalent of enumerated values in a global enumeration space. Atoms can
be created anywhere, passed around, matched, and so on. Converting an atom to its name is done
using erlang:atom_to_list/1.

In many cases, atoms are more efficient than strings, and more descriptive than integers, so
consider their use where you would think of using a string or an integer as an enumerated value.

Atoms can also be written using single quotes: ‘none’ instead of none. This allows you to
have an atom beginning with an upper case letter, or even an atom that is a symbol, such as ‘:’,
which is an atom whose name is “:”. But we digress.

If you are wondering why line 9 is not a match against [_One, _Two | _Tail], review the list

12

Thinking in Erlang RIGHT HEADER HERE

matching rules for list tails at the end of the previous section.

The syntax of if and case is important to understand. Bodies which are followed by another
alternative must end in a semicolon, and the last body does not end in anything except an end
token. If the if or case statement is followed sequentially by another statement, end must be
followed by a comma. If the if or case statement is the last statement in a function, it must end
in a period (or a semicolon if an alternative to the function follows).

So generalizing, a semicolon indicates that an alternative is coming, and a period (or end for
if and case) indicates no more alternatives. Remember this, and you will be thinking in Erlang.

3.4 Guards

Functions and cases can use additional checks to see if they should be executed. These are called
guard sequences, which are boolean expressions with the additional limitation that they may
not call functions, except for a very limited set of functions detailed in the Erlang manual. For
example, we could rework the is_even function to use guards:

1 is_even(X) when X rem 2 == 0 ->
2 true;
3 is_even(_X) ->
4 false.

Figure 11: Example of a guard sequence

Guard sequences are even more useful when used in conjunction with pattern matching. A
pattern can match when a list has at least one element, but it cannot match if that element is an
even integer or not. A guard used with a pattern can do that.

Guard sequences can get very complex. The sequence used above consists of a single guard
expression, but in general, a guard sequence is a series of guards, separated by semicolons, any
one of which must be true. Each guard is a series of guard expressions, separated by commas,
all of which must be true. The Erlang manual goes into more detail about the syntax of guard
sequences.

13

Thinking in Erlang RIGHT HEADER HERE

4 Loops

4.1 Recursion

Okay, without i++, how does Erlang implement loops? The short answer is, through recursion.

We’ve just touched off another riot.

Just as we argued in the previous section that lack of reassignment doesn’t hurt, recursion
also doesn’t hurt as long as the recursion is tail recursion.

Tail recursion means that if a function calls itself, then that is the last thing it does. If calling
itself (or any other function) is the last thing a function does, as soon as it sets up the arguments to
that last function call, it may eliminate any variables that had been defined within the function’s
scope – which includes the function’s arguments as well. Thus, with tail recursion, a function
uses no additional memory.

When you want to implement a loop, you must include the loop variable in the function that
is performing the loop. And that generally means that it is wise to define a function which only
performs the loop (as opposed to a function which does something, then a loop, then something
else).

Here’s an example of printing the integers from 1 to 10 using tail recursion. We’ll use argu-
ment matching, but also a construct you haven’t seen before: sequencing.

1 -module(count).
2 -export([go/0]).
3
4 go() ->
5 go(1).
6
7 go(11) ->
8 io:fwrite("∼n", []);
9 go(X) ->

10 io:fwrite("∼.10B ", [X]),
11 go(X+1).

Figure 12: Counting example

This module defines two functions: go/0 and go/1. They are completely separate functions.
They have no relation to each other. go/0 simply calls go/1 with an argument of 1, which is where
we want the loop to start.

14

Thinking in Erlang RIGHT HEADER HERE

On line 10, we see that the io:fwrite statement has ended with a comma instead of a period.
Statements can be executed sequentially by using a comma between the statements. And al-
though it doesn’t matter here, the return value of a block of sequenced statements is the return
value of the last statement. This is the same as in C and Java.

Now would be a good time to familiarize yourself with the Erlang reference documentation
to figure out what ∼.10B means. Hint, check the modules page, and find the io module. You are
certainly welcome to create a more easily navigable API document.

Note that the recursive call to go/1 is the last thing that go/1 does. This means that go/1
properly implements tail recursion. During the execution of line 11, the argument X+1 is set up,
the local variable X may now be discarded, and go/1 may be called again. We don’t even need
to implement this as a call. It may as well be a goto. Thus, no extra stack space is used for
tail-recursive calls.

If, on the other hand, we had reversed lines 10 and 11 so that we called go(X+1) before
printing out X (thus printing the numbers backwards), then go/1 would no longer be tail recursive,
and we would have to store the arguments and the callee on the stack. So try to make your
functions tail-recursive.

Here’s the canonical non-tail-recursive example:

1 -module(badFactorial).
2 -export([factorial/1]).
3
4 factorial(0) -> 1.
5 factorial(N) ->
6 N * factorial(N-1).

Figure 13: Bad recursion

Although it may look like the call to factorial/1 is the last thing factorial/1 does, it is not.
In fact, after factorial(N-1) returns, factorial(N) must multiply the result by N and then return.
Since this is not tail-recursive, this function is wasteful of memory.

Functions that are recursive but not tail-recursive can sometimes be “cured” by the use of an
additional accumulator argument which totals up a result. Here is the factorial example with an
accumulator, demonstrating tail recursion:

15

Thinking in Erlang RIGHT HEADER HERE

1 -module(goodFactorial).
2 -export([factorial/1]).
3
4 factorial(N) ->
5 factorial(N, 1).
6
7 factorial(0, Acc) ->
8 Acc,
9 factorial(N, Acc) ->

10 factorial(N-1, N*Acc).

Figure 14: Tail recursion properly implemented

There are three functions here. I like to call them the “setup” function, the “termination”
function, and the “recursion” function. The setup function is exported, while the others are kept
private.

We can see that factorial/2 is now tail-recursive. Once the arguments are computed, the only
thing left to do is call factorial/2 with the arguments, and return whatever it returns. We can also
see that factorial/2 carries an accumulator around, which totals up the result so far. We count
down from N, multiplying the accumulator (which has been initialized in the setup with 1) by N,
until we hit N=0 at which point there is nothing to do (the termination), so we just return what
has been accumulated.

It may be difficult at first to understand the concept of accumulators as arguments, but after a
few tries at your own functions, you will get the hang of thinking in Erlang.

What happens if N is negative? We go into an infinite loop. To prevent this, you would use a
guard, which we will get to later.

Sometimes tail-recursion is not appropriate or worth it for some recursive problems. For
example, traversing a left-right tree may be implemented recursively. But because at each node
you must traverse the left node and then the right node, the traversal cannot be tail-recursive
because traversing the left node is not the last call that the traversal makes.

One could always create a tail-recursive tree traversal, but the code and the thought that goes
into it may be odd and difficult to follow. I highly recommend staying away from odd, tortuous
code, unless your purpose is to create efficiency where it isn’t needed, to create a maintenance
nightmare, or to prove how clever you are – in which case you probably shouldn’t be program-
ming at all.

16

Thinking in Erlang RIGHT HEADER HERE

4.2 Less painful loops

When looping over a list, you can take advantage of three efficient list functions, which are map,
foreach, and fold. These functions can sometimes obviate the need to create looping functions
and accumulators.

The map function simply returns a list, each of whose elements is the result of applying a
supplied function to the corresponding element of a supplied list. For example, if we had a list
of 3-tuples (i.e. tuples of three elements), we could extract the second element of each tuple as
follows:

1 -module(mapping).
2 -export([extract/1]).
3
4 extract(List) ->
5 lists:map(fun extractFromTuple/1, List).
6
7 extractFromTable({_, Second, _}) ->
8 Second.

Figure 15: Example of map

26> c("mapping.erl").
{ok,mapping}
27> mapping:extract([{1, 2, 3}, {4, 5, 6}]).
[2,5]

Figure 16: Using the example

If the function argument to the map function is small enough to be readable, we could insert
the entire body of the function into the call to map. This would make it an anonymous function,
which should sound familiar to Java programmers:

1 -module(mapping).
2 -export([extract/1]).
3
4 extract(List) ->
5 lists:map(fun ({ _, Second, _}) -> Second end, List).

Figure 17: Example of anonymous functions

The foreach function is similar to the map function, except there is no value returned.

17

Thinking in Erlang RIGHT HEADER HERE

The foldl and foldr functions take a function and two additional arguments. The function
argument must take two arguments, the first being an element, and the second being an accumu-
lator, and must return the new value of the accumulator based on the value of the element. The
two arguments to foldl and foldr are the initial value for the accumulator, and the list on which
to perform the fold. The foldl function traverses the list from the beginning to the end, while the
foldr function traverses the list in the opposite direction. foldl is preferred to foldr because foldl
is tail-recursive.

Here is an example which counts the number of a’s in a string.

1 -module(count).
2 -export([count/1]).
3
4 count(String) ->
5 lists:foldl(fun (Element, Acc) ->
6 case Element of
7 $a ->
8 Acc + 1;
9 _->

10 Acc
11 end
12 end,
13 0,
14 String).

Figure 18: Example of foldl

42> count:count("aabdca").
3

Figure 19: Using the example

4.3 Summary of less painful loops

If you need to perform an action for each element in a list (returning no value), use lists:foreach.

If you need to compute a value for each element in a list, use lists:map.

If you need to accumulate a value for each element in a list, use lists:foldl or lists:foldr.

There are several other useful less painful loops provided in the lists module. It is a good
idea to glance at the lists documentation to gain some awareness of what is available.

18

Thinking in Erlang RIGHT HEADER HERE

5 Processes

5.1 Doing two things at once

Just as we have threads in Java, we also have processes in Erlang. However, since there is no
global state, Erlang threads are extremely light-weight. As the manual says, Erlang is designed
for massive concurrency.

In Java, we can start a thread by creating a Thread subclass with the run method defined (or
creating a class implementing the Runnable interface), then calling its start method. Erlang has
no such requirement: any exported function can be used as an entry point, and the process ends
when the function terminates.

To start a process, simply call spawn, giving it the name of the function to execute in a
separate process, along with the arguments to pass to the function. The spawn function returns
a process ID value which may be used in other functions. The arguments to the function to be
called are matched against the arguments given.

1 -module(process1).
2 -export([main/0, thread/0]).
3
4 main() ->
5 Pid = spawn(process1, thread, []),
6 io:fwrite("Spawned new process ∼w∼n", [Pid]).
7
8 thread() ->
9 io:fwrite("This is a thread.∼n", []).

10

Figure 20: Example of spawning a process

9> c("process1").
{ok,process1}
10> process1:main().
Spawned new process <0.65.0>
This is a thread.
ok

Figure 21: Result of spawning a process

19

Thinking in Erlang RIGHT HEADER HERE

5.2 Interprocess communication

Each process has a mailbox, which is a single queue of received messages. Messages may be
anything: a string, an atom, an integer, a tuple, a list, and so on. The most useful things to send a
process are atoms and tuples whose first element is an atom. Then the atom can be the name of
the message, and any other elements are additional message data.

A process sends a message to another process using the send construct: Pid ! Message.
Even if the Pid doesn’t exist, the send will succeed.

A process can block to receive a message by using the receive construct. It works just like
case: it takes any number of patterns which are matched against the first received message. The
first pattern that matches the message will have its body executed. However, unlike case, if a
message does not match, the message is replaced on the queue, and the process blocks once
more, waiting for a message that does match.

This is important: unmatched messages are not discarded, but kept on the queue until such
time as they can be matched by some other receive construct.

The receive construct may also take an optional timeout value in millseconds, after which the
“after” clause of the receive construct is executed. In this sense, the after clause is just another
pattern to match against, except this pattern must come at the end of the receive construct. See
the manual for detailed syntax: the body before the after clause is not terminated by a semicolon.

1 -module(receive1).
2 -export([main/0, thread/0]).
3
4 main() ->
5 Pid = spawn(receive1, thread, []),
6 io:fwrite("Spawned new process ∼w∼n", [Pid]),
7 Pid ! hello.
8
9 thread() ->

10 io:fwrite("This is a thread.∼n", []),
11 process_messages().
12
13 process_messages() ->
14 receive
15 hello ->
16 io:fwrite("Received hello∼n"),
17 process_messages()
18 after 2000 ->
19 io:fwrite("Timeout.∼n")
20 end.
21

Figure 22: Example of interprocess communication

20

Thinking in Erlang RIGHT HEADER HERE

7> receive1:main().
Spawned new process <0.53.0>
This is a thread.
Received hello
hello
Timeout.

Figure 23: Running the example

Notice how process_messages is tail-recursive.

In the output, we can see that we spawn a new process, the process starts, the spawned process
receives the hello message, the original process terminates (the return value of send is the sent
message, so the output is hello), and finally, after two seconds, the spawned process times out.

5.3 Process termination reasons

We saw that we can have a process terminate itself normally by simply ending the process’s
function. We can have a process terminate itself immediately by calling a termination function,
such as exit or erlang:error. Each of these takes a reason code. A process can terminate itself
normally by setting the reason code to normal.

When a process terminates itself for any reason other than normal, an exit signal to be sent to
all linked processes. Two processes may be linked together (bidirectionally) when one process
calls the link function with the other process’s ID, and they may be unlinked by calling the
unlink function. See the chapter on Dealing with errors for more detail about this topic.

A process can terminate another process by calling the exit function with a process ID and a
reason code. However, in this case, an exit signal will not be sent when the process terminates.

21

Thinking in Erlang RIGHT HEADER HERE

1 -module(receive2).
2 -export([main/0, thread/0]).
3
4 main() ->
5 Pid = spawn(receive2, thread, []),
6 io:fwrite("Spawned new process ∼w∼n", [Pid]),
7 Pid ! hello,
8 exit(Pid, suckage).
9

10 thread() ->
11 io:fwrite("This is a thread.∼n", []),
12 process_messages().
13
14 process_messages() ->
15 receive
16 hello ->
17 io:fwrite("Received hello∼n"),
18 process_messages()
19 after 2000 ->
20 io:fwrite("Timeout.∼n")
21 end.
22

Figure 24: Example of killing another process

6> receive2:main().
Spawned new process <0.51.0>
This is a thread.
true

Figure 25: Running the example

5.4 Processes as objects

It is possible to consider a process as an object. If the data were stored in the arguments of the
entry point, and the messages that the process received were instructions to operate on the data,
then what you have is, in effect, an object. Here’s a silly example of wrapping a data element
inside an object, with constructor, destructor, set, and get methods:

22

Thinking in Erlang RIGHT HEADER HERE

1 -module(object).
2 -export([main/0, new/1, get/1, set/2, delete/1, construct/1]).
3
4 % Testing
5
6 main() ->
7 Object = new(1),
8 io:fwrite("Get data: ∼w∼n", [object:get(Object)]),
9 set(Object, 2),

10 io:fwrite("Get data: ∼w∼n", [object:get(Object)]),
11 delete(Object).
12
13 % Interface
14
15 new(Thing) ->
16 spawn(object, construct, [Thing]).
17
18 get(Object) ->
19 Object ! {get, self()},
20 receive
21 {return, Object, Thing} ->
22 Thing
23 end.
24
25 set(Object, Thing) ->
26 Object ! {set, self(), Thing}.
27
28 delete(Object) ->
29 exit(Object).
30
31 % Internals
32
33 construct(Thing) ->
34 io:fwrite("Called constructor: ∼w∼n", [Thing]),
35 process_flag(trap_exit, true),
36 process_messages(Thing).
37
38 process_messages(Thing) ->
39 receive
40 {get, Caller} ->
41 io:fwrite("Called get∼n"),
42 Caller ! {return, self(), Thing},
43 process_messages(Thing);
44 {set, _Caller, NewThing} ->
45 io:fwrite("Called set∼n", []),
46 process_messages(NewThing);
47 {’EXIT’, _Caller, _Reason} ->
48 io:fwrite("Called destructor∼n", []),
49 true
50 end.
51

Figure 26: A silly object

23

Thinking in Erlang RIGHT HEADER HERE

2> object:main().
Called constructor: 1
Called get
Get data: 1
Called set
Called get
Get data: 2
** exited: <0.37.0> **

Figure 27: Putting the object through its paces

Note the synchronous get function. Even if there are messages from other processes, they
will remain in the queue until they can get processed. In practice, flushing unknown messages
is sometimes a good idea, by having a catch-all match at the end of the receive clause, which
throws the message away, and perhaps logs the bad message.

On line 8, we must explicitly use the module name to call the right function, because there
is a get function polluting the global namespace. This function, like all global functions, is
documented in the erlang module.

Note that on line 33, the argument is a single Thing, because we spawned the process with a
list of a single Thing. We could always add a guard if we want the object to further check that it
is being constructed with the proper type of arguments.

This program uses the function self, which retrieves the process ID of the currently running
process – equivalent to Thread.currentThread in Java.

On line 35, we are instructing the process to trap the exit signal as a message. On line 47, we
are matching against the standard exit message in order to destroy the object.

5.5 Generic servers

Processes which implement servers are so common in any reasonably complex application, that
Erlang provides an entire module dedicated to making it easy to create a server: gen_server. This
module features a standard interface that servers implement, plus functions to send messages to
one or several servers, synchronously or asynchronously. See the reference manual for more
information.

24

Thinking in Erlang RIGHT HEADER HERE

5.6 Distributed Erlang

Process IDs do not have to refer processing running on the same machine. If you start up the
Erlang shell on a remote machine with a name and an optional hostname or IP address3, you can
use that node name to connect to that node from the local machine, spawn a process using the
node name – which actually spawns the process on the remote machine – and use the returned
process ID to send messages just as if it were a process on the local machine. See the reference
manual for more information.

Note that the only security built in to the distributed system is a shared cookie. If you do not
know a node’s cookie, you cannot communicate with it. No transport-level security is provided
automatically, so if you are transferring sensitive information, you will need to wrap the com-
muncations in an SSL tunnel or use some other encryption and authentication mechanism, such
as Erlang’s ssh library.

If an SSL tunnel is used, then the system must be configured to reject any incoming connec-
tion not from the localhost. This helpful hint is only given because of the author’s experience
with corporate-mandated security mechanisms. The Erlang programmer involved in security is
advised to check out the web for the latest in security for general communications and Erlang.

5.7 Synchronization not necessary

There’s no such thing as synchronization in Erlang! Nor is it needed. Consider that the cases of
synchronization in other languages are to prevent two threads from modifying the same global
data element at the same time. Clearly in Erlang this never happens, because there is no global
data.

3Erlang will use the host’s hostname if you do not specify one. This may not be desired if your hostname is not
adequate to resolve the machine on remote machines.

25

Thinking in Erlang RIGHT HEADER HERE

6 Dealing with errors

6.1 Let it fail

If the Erlang philosophy towards errors could be summarized in a slogan, it would be “Let it fail”.
This means that when you write code and you are about to do some defensive programming, don’t
do it. So, going back to function argument matching, if you want to be sure that your function
will only be used for processing integers, then put in a guard to your function that checks that
the argument is an integer, but do not write an additional function clause that handles the case
for non-integers.

1 % DO
2
3 good(X) when is_integer(X) ->
4 X * 2.
5
6 % DO NOT
7
8 bad(X) when is_integer(X) ->
9 X * 2;

10 bad(X) ->
11 {error, "Argument to bad must be integer"}.

Figure 28: Good and bad error handling in matches

So what happens if you pass a non-integer to these functions? The good function will cause
the process to quit with an exit reason of {badmatch, V}, where V is the value that caused
the bad match. There will also be a stack trace so that you can see how the error came about.
This is the same thing that would happen if you pass a bad argument to a Java function: an
InvalidArgumentException gets thrown, and typically you don’t catch those exceptions.

In the bad case, the function returns normally, does not cause the process to quit, and it is up
to the calling function to decide what to do with the returned tuple. Pointless extra coding for
everyone.

What happens if this function gets its argument from a user-supplied entry, say from a GUI?
In that case, it is up to the GUI handler to validate the input, not the function. The same reasoning
applies if the function gets its argument from another process. In fact, the GUI handler would be
another process anyway.

26

Thinking in Erlang RIGHT HEADER HERE

6.2 Workers and supervisors

Because processes are so lightweight, do not hesitate to separate functionality into processes,
even if those processes are short-lived. Thus, things that go wrong will cause a process to ter-
minate abnormally, and it is up to the linked process to handle that error. If the linked process
cannot handle a condition, it, too, should terminate abnormally, allowing a higher-level process
to handle the problem.

This leads to an Erlang concept known as the supervision tree. The idea is that there are
worker processes which perform actual work, and supervisor processes which do not perform
work, but monitor workers.

Let’s look at an example. In the following program, we’re going to set up a server socket
which will accept connections, and hand off each connection to a worker.

1 -module(serverexample).
2 -export([start_server/0, handle_connection/1]).
3
4 start_server() ->
5 {ok, ListenSocket} = gen_tcp:listen(8080, [binary]),
6 accept(ListenSocket).
7
8 accept(ListenSocket) ->
9 {ok, Socket} = get_tcp:accept(ListenSocket),

10 spawn(server_example, handle_connection, [Socket]),
11 accept(ListenSocket).
12
13 handle_connection(Socket) ->
14 % do stuff
15

Figure 29: Quick and dirty server

To start the server, we are using gen_tcp:listen, and matching it against an ok result. If there
is an error, the process will terminate abnormally. Therefore, it is up to some higher-level process
to handle this error. This would be a supervisor process that makes sure that the server is alive,
for example by restarting it if it dies (see Figure 30).

One advantage of building a supervisor tree this way is that if the aforementioned supervisor
process is terminated by a higher-level supervisor, then it will terminate its child processes before
terminating, which leads to a graceful shutdown automatically.

27

Thinking in Erlang RIGHT HEADER HERE

Server

Supervisor

termination
signal

Figure 30: Supervisor and child

Suppose, instead of failing to open up the server socket, we fail to accept a new connec-
tion (by failing to match the ok condition for get_tcp:accept). In this case, we desire that the
supervisor restart the server, but what happens to the children of the server process, which are
presumably busy processing existing connections?

If we just cared about processing connections, we would be fine because a child process
does not terminate if its parent process terminates, unless they are linked, and we did not link
the processes together in the example (otherwise we would have called spawn_link). However,
suppose we wanted the server process to also keep track of how many connections are currently
being handled, so that when a new connection comes in, we increment the counter, and when an
existing connection terminates, we decrement the counter.

Remember the philosophy that you should not hesitate to move functionality into a separate
process. In this case we would create a process whose sole purpose is to keep track of the
number of connections. It may not sound efficient, but it is, simply because Erlang processes
are extremely light-weight. There is just no downside to having to increment and decrement a
connection counter by passing messages to the counter process (see Figure 31).

28

Thinking in Erlang RIGHT HEADER HERE

Server

Supervisor

termination
signal

Counter

Connection
Connection

Connection
Connection

termination
signals and

start
messages

Figure 31: Added counter process

Thus, if the server dies, the counter process remains alive and maintains the correct number
of outstanding connections.

If a connection terminates, the counter process needs to be notified so that it can decrease
the number of connections. Because we have defined the server process as a worker process, it
would be unwise to have the server process monitor the connection processes, because then it
would be both a worker process and a supervisor process.

The answer could either be to write another supervisor process just for the connections, or
to have the server supervisor also monitor the connection processes. Unfortunately, the standard
supervisor in Erlang does not have the facility to call a user-defined function when a linked
process terminates. The purpose of an Erlang supervisor is to handle termination in one of a
limited set of ways.

However, we know that linking two processes will cause termination signals to be sent, and
these can be handled as we saw above with process_flag and trap_exit. This could be the signal
to the counter process to decrement its counter.

We have handled the conditions where the server process and the connection processes ter-
minate abnormally (and normally) by thinking in Erlang. However, we have also added a counter
process which needs to be supervised. What happens if the counter process terminates abnor-
mally?

In this case, we know that we have lost track of the number of connections. We can use any
of a number of strategies. The simplest one would be to terminate all existing connections so that

29

Thinking in Erlang RIGHT HEADER HERE

we start from a known number of connections (zero). This happens automatically, since links are
bidirectional. If an unhandled exit signal is received, a process will exit. This means that if the
counter process exits, and it is linked to several existing connection processes, then all of those
processes will also exit.

Perhaps a more sophisticated strategy would be to have the connection processes ignore the
counter’s exit signal. Then, when the counter process starts up, it must find all the existing
connection processes, and link to them. There is an existing server which can do this, called pg2
(or process group 2). A process can add itself to a named process group, and other processes
can then query the list of processes in that group. If a member of the group terminates, it is
automatically removed from the process group. See Figure 32.

Server

Supervisor

termination
signals

Counter

Connection
Connection

Connection
Connection

termination
signals and

start
messages

Process
Group

list

Figure 32: Counter supervision and connection process group

Thus, the counter process can query the group for the processes, and link to each one. The
fun thing is that if a connection process dies after the counter process sees it in the group, but
before it can link to it, then when it does link to it (incrementing the counter), it will receive an
exit signal (decrementing the counter).

30

Thinking in Erlang RIGHT HEADER HERE

References

[1] http://www.erlang.org and the documentation provided therein.

[2] http://www.erlang.se and the documentation provided therein. The Programming Rules and
Conventions is an excellent guide to writing clean Erlang code.

31

